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RESEARCH ON NONLINEAR DIFFERENTIAL EQUATIONS

Robert H. Martin , Jr. /Department of Mathematics
North Carolina State University
Raleigh , North Carolina 27607

The main topic of mathematical research investigated in this project is the

study of the existence and behavior of solutions to semilinear differential equa—

tions in Banach spaces . The principle application of these abstract techniques

is found in the study of systems of semilinear parabolic equations . The literature

generated by this project includes the published article [33 *; the submitted artieleB

[2], [le); the pz eliminary report (6]; and the book [51.

The results of’ [31 characterize invariant sets for evolution systems in Banach

spaces. So let X be a real or complex Banach space with norm denoted 
~~ 

and

let D be a closed subBet of X. A family U = (U(t ,s) : t > a > 0) of mappings

from D into D is called an evolution system of type (A~ (w E F) if each of

the following conditions hold:

(Ui) U (t,t)x x for all t > 0, x E D .

(U2 ) U(t ,a) U ( a ,r)x U(t ,r )x for all t ~ a > r > 0 , x E D.

(U3) ~U (t,s)x - U (t ,s)y I ~ x y I e~
(t 8) for all t > a > 0, x ,y E D.

(Ule ) The map (t ,s) • U(t ,e)x of ((t,s) : t > a > 0) into X is continuous

f’.r -ac;h x € D.

*N~~b e .  in brackets refer to the bibliography .
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The pr~nciple result of this paper is

Theorem 1 [3) . Suppose that U sat1sf~es (t i l )—CU 14 ) and that C is a closed ~~~~~~

of X and C C D . Then these are equivalent

(
~

) U(t,s) C -
~~ C for all t. > s > 0 (i-c ., x E  C and s .~ 0 implies

that U(t,s)x E C for all. t s) ..

(ii) inf m t  d(U(t $ h, t)x; c)/h 0 for all t > 0 and x E C , where

d(y; C)  ~ntC !y — z~ : z E C} for each y E X.

Some applications of this result to the study of the behavior of solutions to sys-

tems of aemilinear parabolic problems is included in [3, 5143 . Recently there has

been a (perhaps surprising) connr~et .on estab . .i shed between Theorem 1 (and its proof)

and a number of diverse results in riordinear functional analysis (fixed points

theorems, nortial ~~l;abL~~~ ~~~~~~~~~ and Leneralizatlons of the Bishop—Phelps

theorem for ~~~~ exi s r~~ of trir~~er~ func~tionals for convex sets). A unification

of these ideas and techniques can ~~~ ~c und in a recent paper of Bre~ is and Browder [ii.

One major topic developed from the study in this project is that of’ the deter-

mination of invariant sets for solut~ons to semilinear equations. We state the

fundament al abstract result first and then indicate its applicability by considering

a nonlinear system of paraboltc equations. Suppose that X is a Banacli space with

norm denoted by H and that T {T(t,s) t > a > 0) is a family of bounded

linear operators fro~n X into X that satisfy the following properties:

(Ti) T( t,t )  I and T~t ,s)T(s,r) T(t,r) for all t > a ~ r > 0.

(T2) The map (t ,s) + T(t,s)x is continuous from ((t,e) : t > a ‘ 0) into

X for each x E  X.
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Suppose also that D is a closed aubeet of [0 ,.) x X and that if

E {x C X : (t,x) E D}, then D
t 

is nonempty for all t > 0. Nov let B be a

continuous funct ion from D into X and a a continuous function from (0,.)

into X . For each (s ,z) E D we consider the existence of solutions to the

integral equation

ft
(I!) u (t ) — T(t ,e) ( z  — a ( s ) )  + ~(t) + J T(t ,r)B(r , u (r ) ) dr , t > s .

J s

If 6 > 0, a continuous function u : [s, $ + 6) + X is said to be a solution to

(1K) on (a, s + 6) if (t, u(t)) E D for all t C (a, a + 6) and u satisfies

(IE) for each t € [a , a + 6) .  We have the following basic result on the local

existence of solutions to (1K ) (recall that d (x;E) inf(~x — y f y e  El for each

z E X  and E C X ) .

Theorem 2 lId. In addition to the conditions enumerated in the above paragraph

suppose that eith er

(a) T(t ,s) iB compact for each t > a > 0

or

(b) there ii a continuous, increasing function L : [0,.) + [o ,.’) such that

IB(t,x) — B(s,y)f < L (t ) ( I t  — if + x — it) for all (t ,x) ,  (t ,y) € D

with t’e.

Then the following statements are equivalent :

(1) For each (s,s) C D there is a 6 6(.,s) > 0 such that (I!) has a

solution u on (s , a + 8).

(ii) h a  tnt d(T(t + h, t)(s + a ( t ))  + u(t + h) + hB(t ,s) ; Dt+h)/h — 0
h.0.

for all (t ,s) e D.
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Investigations concerning the global existence of solutions to (IE ) may be

carried out using the usual techniques. In fact, if (b) in Theorem 2 holds and

also (ii ) Is satisfied , then each solution to (XE) is unique and the noncontinuable

solution exists on [a ,.’) for each (s~z) £ D. Several basic results along the

lines of Theorem 2 may be found in the book (5, Chapt er VIII). Also, this book

contains several examples illustrating these ideas (see Chapter VIII and IX of [5 ] ) .

In order to illustrate the applicability of Theorem 2 , we consider a system

of two semihinear parabolic equations. So suppose that ~2 is a smooth bounded domain

in I~~, that f and g are continuous functions from B2 into i~, that t~ is

the Laplac lan operator on ~2, and cons ider the system

ut (t ,x) a.Au(t ,x) + f(u ( t ,x) ,  v(t,x ) )

u~
(t ,x) = b4v(t ,x) + g(u ~t ,x ) ,  v(t ,x) )  for all t 0, x E fl

(P S ) y c a n
u (0 ,z)  = u0 (x ) ,  v(0 ,x)  v0(x)

u(t ,y) ~(y) ,  v(t ,y) y(y)

where a,b > 0, u0,v0 : ?i+ F are cont inuous, and B,y : ~fl + F are cont inuous .

The existence and behav ior of solutio ns to the parabolic system can be effectively

studied by using abstract techniques , and we give a brief indication of these ideas

here (see also [le ] and 15, Chapter VII I and Ix]). Suppose that 1 < p < • and that

X ii the Banach space L~(fl ;  F2~ of all measurable functions

• .‘ ~~~~~~ 2~ 
: Q + F2 such that

(J (.(z)l~~x]Z’P

2.,(here . 1  is some norm ~n I~ , . In this case , the linear part of equation (PS)
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is autonomous, so the linear evolution system T — {T(t ,s) : t ~ s > 0) satisfies

T(t,s) — T(t — a) for a.].]. t > a > 0, where for each • — (~~~ s 2~ 
C

t ‘ T(t )~ is the solution (u(t, .), v(t , •)) to the linear parabolic system

u
~
(t,x) — a.Au(t,x)

vt
(t,x) — b.~tv(t ,x) for al]. t > 0, x E 0

(LPs ) and y E~~0

u(0,x) — •1
(z) ,  v(0,x) =

u(t,y) — v(t,y) a 0

The nonlinear term B is the substitution operator generated by the map (f,g)

of B2 into F2 :

[B ](x) — (f($(x ) ) ,  g($(x))) for all xE 0 and • C D(B )

where D(B) — € L~
’ : x + (f(~ (x ) ) ,  g(~ (x ) ) )  is in L~I

The function a: [0,.) + reflects the inhomogeneouz boundary conditions in (PS):

s(t ) — (c1
1

(t , ), a~(t, ) )  where a1,a2 : (0,
.) x i~+ F are continuous and satisfy

— a6a1(t,x)

— b6ci2(t,z) for a].]. t > 0, X E  0
and y E~~0

a
1
(t ,y) — B(y), a2(t ,y) —

With T, B and a as abovs, consider the integral equation

I

- 

. 

~••~••_•••_ ;j~~,

- - - ---— 

-i

---
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(rE—PS) (11(t), v(t)) T(t)((u , v~) — (a,~(0, ), a~(0, ~~~ + (a~ (t , ), a2(t , 
) )

~t
+ J T(t — r)B(U(r), V(r))dr.

J o

It (u,v) is a solution to ( XE—PS ) and u(t,x) [U(t)](x) and v(t,x ) [V ( t )](x )

for all t > 0 and x E 0, then (u ,v) is called a mild L~—so].ution to (PS) .

Theorem 2 may be applied to the Integral equation (IE—PS), and hence give informa-

tion on the behavior of solutions (or mild IY—soiutions) to (PS). We indicate the

following two important examples:

Example 1. Suppose that a = b and that A is a closed, bounded , convex subset

of F2 such that (u0(x) ,  v0 (x ) ) ,  ( 6 ( y ) ,  y ( y ) )  C A for all XE 0 and y E ~Q.

Suppose further that for each (~~~, n0) E A there is a solution t + (~ (t ) ,  ~( t ) )

to the ordinary differential equation

= t(~~(t ) ,  n ( t ) )  ~(o) =
(ODE)

fl ’( t )  = g(~ (t), n(t)) n(0)

such that (~ (t ) ,  n ( t ) )  E A for all t > 0 (i.e. A is positively invariant for

(ODE)). Then (PS ) has a mild IY—so].ution (u,v-) such that (u(t,x), v(t,x )) E A

for all t > 0 and x € 0. This result follows from Theor em 2 by taking

D — (0 ,.) x IC~(A ) where 1C~ (A)  a {
~ € : •(x) C A ac . x E  0).

In Example 1 it is crucial to require that a — b. However, using differential

inequalities this requir ement can be removed as is indicated by our second example.

~~~~~~~~ Suppose that P — (P1, P2
) : (0,”) x ~~~~ F

2 is an upper solution to

(PS) :

- - - -
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~ - P1(t,x) ~ e~~1(t ,x) + f(P (t ,x) )

.
~~~~ P~(t,x) > b~P2(t ,x) + g(P(t,x)) for all t > 0 , x E 0

and y C
P1(O,x) 

> u 0
(x ) , P2(O,x) > v0

(x )

P1(t ,y) > 8(y) ,  ~~~~~ >

and that Q (Q1, Q2) : [0 ,”) x -* F2 is a lower solution to (PS) (that is,

and Q~ satis fy analogous inequalities as P1 and P
2 

with “>“ replaced by “.c”).

Suppose further that

and > n2 implies t(~1, 
~~ 

~~. 

~~~~ ~~

and

~ and = implies 
~~~~ ~~ ~ g(n1, n2).

Then there is a mild L~—solut ion (u ,v) to (PS) such that

Q.~(t,a) < u(t,x) < P 1
(t,x) and Q2(t,x) < v( t ,x) 

< P2(t,x)

for all t > O  and x E O .

This result follows from Theorem 2 by defining D C t o ,.) x by (t ,+) C D only

in case t ~ 0 and Q1(tx) < •1
(x ) < P1(t,x) for x E 0 and i — 1,2.

Further examples indicating the range of applicability of Theorem 2 and related

abstract theorems may be found in (5, Chapter VIII and IX]. Moreover, in [2] ,  an

abstract theorem is presented that applies to (PS ) when the gradients of the unknowns

appear in the nonlinear terms. For example , consider the system

- -
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u
~

(t ,x) a aAu(t ,x) + f(u(t ,x ) ,  v(t ,x ) ,q u ( t x ), q v (t ,x ) )

vt (t ,x) — bbv(t ,x) + g(u(t ,x ) ,  v(t ,x),gu(t ,x),~~v(t ,x))
(PS)’

u(0,x) u~(x), v(O,x) = v0(x)

u(t,y) a 
~, v(t y) = 0

where t > 0, x E 0, and y E ao . Also , “s” is the gradient with respect to the

2 n nvariable x C 0, and hence f and g are continuous functions from B x F x F

into F .

Example 3. In addition to the conditions in the above paragraph , suppose that

a — b and that ther e is a closed, bounded, convex subset A of F
2 such that

(0 ,0) E A and that there are numbers L > 0 and ~ C [0 ,2) such that

(‘~ If(C1, ~2’ ~1’ 
r,2)I ~~L(1 + In 1! + In 2I)~ for a.].]. ~1,~ 2 E F , n1,fl2

E Fn .

Suppose further that it ~ = 
~~~~ ~~~ 

E A , ~ — (ii~~)~~ ~ 
a (

~~
)
~ E and

urn d(~ + h( ~ n 1, ~ c~ ) ;  A)/h — 0
h+0 1=1 i—i.

then

u r n  d(~ + ~~~~~~~~~~ g(~ ,ri,~ )) ; A)/h — 0.
h~O+

Then if (u0
(x) , v0(x)) C A for a].]. xC 0, there is a mild Lu—solution (u,v)

to (PS ) ’ on [0 ,.) x 0 such that (u(t,x), v(t ,x) )  C A for a.1.]. t > 0 and x C 0.

The result s of (2 )  can also be applied to obtain criteria for the stability of

solutions to (PS)’ as we].]. (see Remark 7 of [2]). As an example , suppose that (a)
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in Example 3 is satisfied and also that there are numbers R 1,R2 > 0 and u~ > 0

such that if (C1, ~2 ) E (0, R1] x [o~ R~] then

(~
) j f !C~ I = m ax {J C

1
f ,  k21 then t(C

1
, C2, e, c) < — w t C 1f for all

~ E

(b) if IC2! — max {1C11, IC 2!) then C2, n, 0) .~.—~ !C 2 t for a.1l

r~ E R~~.

Then for each Cu
0
, v0

) such that (u
0

(x ) ,  v (x ) )  C [0, R1] x [0, R2
] there is a

mild L~—so1ution (u,v) to (PS)’ on [0,—) x n such that

ess sup max {Iu(t ,x ) I ,  Iv (t ,x ) I }  ~ e 1
~
)t ess sup max(fu0(x)(, ~v(x) (J

x C O  x € 0

for all t >0 .

As one final comment we remark that the techniques used in each of our examples

apply to systems of m equations and m unknowns for any integer m > 1.
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